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Summary

Functional approximation is a basic tool for characterizing and analyzing a process of
interest. Data consisting of a set of input-output pairs (z;,y;) € R? i=1,...,N, are
recorded and used to build a model of the corresponding process generating function.
Such model construction is a common problem in various scientific fields, including pat-
tern recognition, computer vision, and applied mathematics. The literature contains
several methods for constructing such functions which involve building models from
linear combinations of nonlinear functions. Examples of such methods include splines,
kernel estimates, neural networks, and radial basis function networks (RBFNs).

Although these methods are commonly employed, they do have several significant
drawbacks. For example, splines and kernel estimates require the estimation or approx-
imation of critical parameters, either without guidelines or at computational expense.
Neural networks and RBFNs have a tendency to overfit the data and their imple-
mentation often requires numerous adjustments supplied by an experienced user. It
should also be noted that neural networks do not guarantee convergence to an optimal
solution.

Genetic algorithms (GAs), on the other hand, have been proven to reach an optimal
solution. GAs are recently developed search and optimization techniques which have
been shown to be efficient, robust, and provide near optimal solutions. As such, GAs
may represent a viable alternative to the above methods.

This paper proposes the use of GAs and least squares to fit piecewise linear functions to
data sets in R?, where the optimal locations of the knots are unknown. A GA designed
to perform such a task is described, along with supporting theory, and demonstrated
on two datasets - one is fit with a single line (and the results compared to the least
squares regression line) and the other is fit with a three-piecewise linear function. OQur
results show that, indeed, GAs can yield near optimal results at limited computational
expense.

Several areas are available for future research. We are currently designing a genetic
algorithm which determines the optimal number of lines as well as the knot place-
ments. A comparison of the results of GAs to those of related methods, including
those mentioned above, is also planned. Finally, we are exploring the use of GAs in
multivariate situations, such as fitting hyperplanes to data, as an alternative to MARS
and projection pursuit regression. ’



Abstract

Genetic algorithms are computational techniques which, given an optimization prob-
lem, use elements of directed and stochastic search to find the “best” solution from the
space of potential solutions. We apply GA’s to the problem of fitting the minimum
least-squares piecewise linear function to a set of data points in R2. We assume that
the number of pieces is known but the knot locations are unknown. The effectiveness
of our algorithm is demonstrated with two examples. Results are found to be quite
promising and encourage further research.

Key Words :

Genetic Algorithms, Splines, Neural Networks, Least Squares, Function Approximation



1 Introduction

Function approximation is a basic statistical tool for characterizing and analyzing
some process of interest. Data or measurements, often subjected to random error,
are recorded and an approximation of the process generating function is constructed
from this partial information). Constructing a function from a set of input-output
pairs is a common problem in numerous scientific and engineering fields, including
pattern recognition, computer vision, and applied mathematics®?). The literature
contains several methods for constructing such functions®, including splines*%) and
neural networks(®, using least-squares estimation. However, splines, kernel estimation,
and related methods require the estimation or approximation of critical parameters
either without guidelines or at computational expense(®®). Neural networks also suffer
from this problem and do not guarantee convergence to an optimal solution(®”). As a
consequence, function approximation is an area of ongoing research.

Genetic algorithms are recently developed search and optimization techniques from the
field of artificial intelligence. They have been shown to be efficient, robust, and pro-
duce near-optimal solutions to problems in areas such as pattern recognition, machine
learning, and statistical classification®%!%!1), This paper proposes the use of genetic
algorithms and least squares to fit piecewise linear functions to data sets in R?, where
the optimal locations of the knots are unknown. We first present the problem and
discuss current methods for function approximation. We then introduce genetic al-
gorithms and detail how GA’s can be used to fit optimal piecewise-linear functions.
Several examples are presented with results, and areas for future research are men-
tioned.

2 Problem Statement and Current Methodology

We are given data (z,¥y), € = (21,22,...,2n8), Y =(y1,¥2,-- -, Un), (@5, %) € RV i=
1,...,N, 1 £ N < co. Define 73y = min{z;; i = 1,...,N}, zy) =max{z;; ¢ =
1,...,N}. The values z; and y; are related by an unknown function f such that
yi = f(z:) + €, where ¢ is a random error. The problem is to approximate the
function f by a k-piecewise linear function f, k¥ known, where the knot locations z
=(z1,...,2x) are unknown and the least-squares error is to be minimized. We make

no assumptions regarding the smoothness of f or the distributions of (z, y) and e.

Classical approximation theory suggests several methods for solving such a prob-
lem, methods which involve building models from linear combinations of nonlinear
functions(!?). Such linear estimators can be expressed as '

ﬂm=§&mm% o

where K (z, z;) is a weighting function which depends on some parameter(s) A(®). Some
examples includes kernel estimates, series approximation (which we will not explicitly

discuss), and spline fitting(1*56) as well as the more recent neural network and radial
basis function estimates(12:13:14),



Kernel estimators can be expressed in the above form where the weighting function or
kernel K, has a simple form independent of the design of . Examples of such weighting
functions are the uniform and triangular kernels. K is a bounded function assumed to
have support [-1,1], with a maximum at zero, and is usually chosen to satisfy certain
moment conditions®. The choice of moment conditions determines the order m of the
kernel estimate: conditions on higher order moments lead to higher order estimates.
The parameter A is called the bandwidth and determines (1) the maximum distance
away from z; a data point can be and still be included in the estimation of f(z;, and
(2) the amount of emphasis placed on observations at certain distances from z;. Note
that kernel methods require the researcher to select the appropriate values for Ky, J,
and m. Although these choices are critical to the quality of the resulting estimate,
they are often made by trial-and-error or time consuming adaptive methods(*®. X is
often chosen using cross-validation, although CV does not guarantee the selection of
the optimal A(®).

Another class of linear estimators closely related to kernel methods are splines. A

spline of order L with knots at 21,..., zx is a function s of the form
-1 K
s() =Y 6zt + > 6z — 2) Y . (2)
=0 i=1

ford; e R, i=0,...,L—-1,and §; € R, i = 1,...,K. In other words, a spline is a
piecewise polynomial where the pieces are tied at knots in such a way that s satisfies
certain continuity properties (e.g., the first L — 1 derivatives are continuous). As
such they can be viewed as an extension of polynomial regression®. Different classes
of splines can be formed by using different basis functions, e.g., B-splines, periodic
splines, etc.(!). Splines are useful when we want an estimate which meets a fitness
criterion as well as a smoothness criterion. Hence we may estimate y by choosing f to
minimize

N b
Y~ fa) + A [ fde (3)

for A\ >0, mée 2, anda < z; <bV j=1,...,N. The solution f is called
a smoothing spline estimate, and A is the smoothing parameter. X determines the
tradeoff between goodness-of-fit and smoothness(!3). Splines have applications in areas
such as computer tomography(® and military analysis®.

To use (smoothing) splines for analysis, the order L of the spline, the number and
location of the knots, and A need to be determined (as well as the choice of ba-
sis and the smoothing criterion). Finding a good estimate for ) is computationally
demanding(*® and m is often based on prior information(®. as opposed to theoretical
considerations. Schwetlick and Schiitze® describe an algorithm which optimizes the’
location and number of free’ knots but is computationally 'too expensive’ and involves
the approximation of various parameters whose effects on the final estimate are un-
known. Larson® finds a closed form for the minimizing abscissa for unknown knot
locations, but does not mention the optimization of the number of knots.

A recent development in functional approximation is the use of neural networks (NN)
and radial basis functions (RBFs). Multilayer neural networks are linear (in the sense



of (1)) function approximators of the form, e.g.,

) M
flze, W) = Z:I,ngj(ajxk) (4)

where f;,1 < j < M are the weights connecting M hidden units to the output unit,
aj, 1 < j < M are weights connecting the input layer unit to the jth hidden layer unit,
and the g;'s are the hidden layer activation functions!?. W is the matrix of network
weights. A special case is based on radial basis functions where the approximation is
produced by passing each z; through a set of basis functions, each containing a RBF
center, multiplying the result by a coefficient, and then summing the results. In other
words, :

M
Fl@e, W) =wo + 3wt P¢(|lzx — ¢l /) (5)
j=1

where ¢ is the radial basis function, {c;} is the set of RBF centers, and 7 is a scale
parameter. Often ¢ corresponds to a Gaussian density®!?). Note that a radial basis
function network (RBFN) is essentially a kernel method for regression®. NNs are
easily programmed and, as a result, have become an almost universal optimization
‘crank’: simply toss in the data, add any number of parameters, and wait for gradient
descent to produce the result. NNs do require numerous adjustments, supplied by an
experienced user, and do have a tendency to overfit or overparameterize the data("!3),
They may also get stuck in local minima, unlike GA’s(>'%). Chen and Jain®? report
that backward propagation can be slow and sensitive to noise. They suggest a robust
modification whose parameters are the focus of further study. RBFNs have been
shown to outperform MLPs(®) even though the choice of centers® and the curse of
dimensionality can make implementation difficult. It should also be noted that both
NN and RBFN results lack interpretability(?.

Our preliminary studies indicate that GA’s may represent a viable alternative to the
above methods.

3 Genetic Algorithms

Genetic algorithms are stochastic search methods which provide a near optimal solution
to the evaluation function of an optimization problem(®%1%11:18) They can be used to
search complex, multimodal surfaces via steps based on the processes of natural genetic
systems. They are designed to work simultaneously on a group of possible solutions
(parallelism) which helps prevent the algorithm from getting stuck in a local optimum.
Their effectiveness has been shown in numerous problem solving applications, including
scheduling, classifier systems, and pattern recognition?.

Each possible solution is encoded as a string or chromosome; a set of such chromosomes
is called a population. An evaluation (fitness) function provides a mapping from the
chromosome space to the solution space. GA’s start with an initial population of a
fixed number of randomly generated strings. At each iteration, three basic operations
- selection, crossover, and mutation - are applied over the current population to yield



a new population of strings. This cycle is repeated until some termination criterion is
achieved, at which time the best string achieved is generally taken as the solution to
the optimization problem.

3.1 Example

For a more detailed look at this process, we will detail the stages of a GA model, the
elitist model. Consider the problem of maximizing a function f(z), z € D, where D
is a finite set and f(z) > 0V z € D. Each string S, built from members of a finite
alphabet A = {a,...,0,}, corresponds to a value z in D and may be written as

SZ(VW’YI)”WVL% 7ie~/4 V’L:O,,L

The number of different strings that are possible is a’. A random sample of size M
(even) is drawn from these a” possible strings with replacement to form the initial
population, @. The evaluation or fitness value of each string S is fit(S) = f(z) where
x € D is the value represented by S.

The first operation, selection, is modeled after Darwin’s concept of ’survival of the
fittest’. Strings from the population are selected and placed in a mating pool; the
probability of selection for string j is b; = fit(S;)/ L1, fit(S;). For example, if B; =
S _1 bk, M strings are selected and placed in the mating pool by the following process:
1. Generate a random number rnd; from [0,1]
2. If rnd; < By, select Sy; for j =2,..., M, if B;_; < rnd; < Bj, select S;
Note that strings with low fitness values are rarely selected while some strings may be

selected more than once. We denote the mating pool, our new population, as Q;.

In single point crossover, or reproduction, pairs of strings exchange information, thereby
generating two new offspring for the next population. All strings are paired at random
in such a way that each string belongs to only one pair (hence there are M/2 pairs).
Let the given pair be denoted as

ﬂz(ﬂl,...,ﬁL) and T:(Tl,...,TL)

and let p. be the probability that a given pair of strings undergoes crossover. Then
the crossover operation on a given pair may be described as

1. Generate a random number rnd from [0,1]
2. If rnd < p,, then generate a random integer pos from [1, L-1].

3. Strings § and 7 are replaced by strings ' and 7 where

IB/ = (;817 s 7ﬂpos;Tpos+1a .- -aTL) and 7' = (le- -';Tpomﬁpos—}—lv" : aIBL)




The resulting population is denoted Q. Note that Q, has M strings, some of which
may have also been elements of Q.

Mutation involves the random altering of characters in the chromosomes (strings) of
Q;. Let p,, denote the probability of mutation of a given character. Then, for each
character f3; of every string 3, the mutation stage consists of

1. Generate a random number rnd from [0,1]

2. If rnd < pp,, mutate character ; by replacing it at random with an element from

A—{B:}-

Note that through mutation, a given string can become any of the a” possible strings.
The mutation probability may vary over iterations, initially taking a high value, then
decreasing to a pre-specified minimum, then increasing again in the later stages of the
algorithm. When the algorithm has little knowledge of the search space, the algorithm
is encouraged to explore it’s domain through a high mutation probability. As the
number of iterations increases the algorithm will move towards a solution, hence the
mutation probability is decreased to allow a search of the vicinity near this solution.
To avoid the convergence of the algorithm to a local optima, the mutation probability
is increased in the later stages to again allow for a more random search. The resulting
population we denote as Q3.

We now replace our initial Q with Q3 and repeat the above stages until the algorithm
converges to a satisfactory solution. The stages we have discussed so far are common
to all GA models. In the elitist model of GA’s (EGA), a further operation, elitism, is
added to ensure that knowledge about the best string obtained so far is preserved. In
this way the algorithm can report at any time the best solution achieved during the
entire process. The basic steps of the elitist model are

1. Generate an initial population ¢ and find the fitness values of each string S in

Q.

2. Find the string Spozq in @ with the maximum fitness value fit;..¢ of all of the
strings in Q)

Perform selection on @ yielding Q)
Perform crossover on @; yielding Q-

Perform mutation on @)y yielding Q3

il AT -

(elitism) Compare the fitness value of each string in Q3 with the fitness value of
Smazq- If no string in Q3 has a fitness value greater than or equal to fit4z0,
replace the worst string in Qs with Spez0-

7. Replace @ with @3 and go to step 2.




3.2 Remarks
3.2.1 Stopping Rules and Convergence

With any optimization technique, it is important to ensure that the process will lead to
the optimal solution. It has been theoretically proven(!®) that elitist genetic algorithms
will converge to the optimal solution as the number of iterations, n, goes to infinity.
However, in practice; n is finite so a stopping rule is used to determine when the
algorithm has reached an acceptable solution. There is, in general, no stopping rule in
the literature which will ensure the convergence of GA’s to the optimal solution. Two
common stopping rules are

e Execute the process for a fixed number of iterations and report the best string
found as the solution.

e Execute the process until the fitness value does not show adequate improvement
over a fixed number of iterations, and report the best string found as the solution.

The rate of convergence of GA’s depends on M, p., and p,,. Hence the values of these
parameters must be chosen properly. Note, however, that the proof of convergence to
the optimal solution does not depend on the parameter values, i.e., the GA will converge
to the optimum as n goes to infinity regardless of the parameter values chosen.

3.2.2 Pattern Classification

Recently, several applications of genetic algorithms in the field of pattern classification
have been reported®'%1), Classification is the problem of finding a decision boundary
that can correctly distinguish between different classes in the feature space. Given a
set of data points in RY, N > 1 , genetic algorithms can be used to perform this
task by, for example, allowing each string to represent a decision boundary formed
by a set of lines or hyperplanes. A fitness function which takes larger values for
smaller numbers of misclassifications is then maximized. Usually the optimal decision
boundary is nonlinear so our task is to approximate the optimal boundary with a set
of linear segments. The algorithm is run until a decision boundary with an acceptable
number of misclassifications is found. '

The application of GA’s for classification is similar to the application discussed in
this paper. Here, each string also represents a set of lines and the string which best
approximates the optimal solution is reported as the result. Our interest, however, is.
focused on finding a piecewise linear function which will minimize the squared distance
of the data points from the function, and not on dividing the data into distinct classes.



4 Theory of Line Fitting in R?

4.1 Mathematical Formulation

Let (z,y) be the given data set, & = (z1,2,...,2n), ¥ =(¥1,%, ..., Un), (zi,y:) €
R*Vi=1,...,N, 1 < N < oo. Define gy = min{z;, i = 1,...,N}, o) =
max{z;, i =1,...,N}, yqy = min{y;, 1 =1,..., N}, Yvy =max{y;, i=1,...,N}.
Let Ly, represent the class of all ko-piecewise linear functions Lj,(z) in R? that can
be expressed in the following form:

ﬁjlko Exz’) ?g Z(1) < Ti < T(z)
Goko (i) 1 Z(j2) < Ty < Z(j3)
ijo (:D) = . . . (6)

Ljgko (%) 1f T(ik) < T < T(jke41))

where z1) < 2(j2) < - < Tgkg) < T(j(ko41)) 5 T(G) = T(1)s T(i(ko+) = T(w), and each
Ljiky, 1=1,... ko, can be expressed as

$COS9ji+'y sin9ji= §is OSOJ'-,;S‘I{', djiER

where 6;; (0 < 6;; < 7) is the polar angle formed when the polar axis is the y-axis
and the origin is the intersection point between the y-axis and Lj.ky, and dj; is the
perpendicular distance of the line from the origin (0,0). The number of elements
Ljk, € Ly, is uncountable. However, we can restrict the class of functions under
consideration to a finite (discrete) set by restricting the values of § and d. Let 1, be
the number of bits used to express 6 and let 14 be the number of bits used to express
d. Note that the precision of the line is determined by both 1, and 1. We restrict 0

to the values {0, 7, 27, .. ., @Z—EM} In specifying dj;, we utilize the rectangle rect

formed by the points (zqy,y)), (Zv),¥w), (2@), yev)) and (zvy, yvy)- Note that
rect contains the entire data set. Let diag be the maximum diagonal of rect and let I,

be defined as
L= { T cos@ +yaycosd f0<O<7/2 )
L zvycosf+yuycosf ifn/2<0<m

Then for a given 6;;, dj;; may only take values within the set {dj; = lo;; +kjid 1 kji €
{0,1,...,214 =1}, § = diag/(24 —1)}. Let L3 denote the finite set of functions in

Ly, which satisfy these restrictions. Then L) may be expressed as

‘Cgo = {ijo(m) : ijo(m) € Eko; . .
Ly, is of the form z cos 0j; + ysin0; = lg,, + k;i6 V i=1,..., ko,

0 € {0, 2, 28,..., &) ke {0,1,...,2% — 1}, and 6 = diag/(2" — 1)}.

Note 1 A line with d = [, intersects rect at the point (z(1),yq)), if 0 < 8
the point (z(w),y()), if 7/2 < 6 < w. The parameter kjid, 0 < k6
sometimes referred to as the of fset value.
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Figure 1: A data set with functions from £

Note 2 For fixed i and 6j; the lines Lz, kj; =0,...,2" — 1, are parallel and evenly
spaced across the area covered by rect. .

Note 3 If I} > 1, and I3 > 14, then £}, C L} where L) corresponds to 1, and 14 and
Ly corresponds to 1 and 1.

Figure 1 represents a sample data set with several functions from L . For sake of
clarity, we will henceforth specify £} as L (©,K) where 6 has © possible values
and k has K possible values (note that © = 2* and K = 2!4) and specify Lj;,(z) as
L(6;k,, kjr,)- Our goal is to use genetic algorithms to find the minimum least-squares
ko-piecewise linear function where kg is known. This is possible if and only if

1. Our search space L) (©,K) contains the optimal solution, i.e., minimum least--
squares function.

2. The algorithm converges to this optimal solution

as ©® — oo and K — oco. We first determine whether these conditions are met when
ko = 1.



4.2 Case -,k(), =1

In the case where kg = 1, we would like our optimal string to represent the minimum
least-squares line, i.e., the line whose fitted values ¥, satisfy

N N o R
O oo —w)) ' = me{(Z(y}z —4)") 7 1y = L0, k) |x, Lin € L1} (8)

=1 i=1
The least-squares line is known as ¥ = f1x + fy, where

ﬁ Zil\il(mi ~Z)(y: — 7)

—IVI:T Ty (zi — )2

b=

R . 1 N 1 ‘ N
Po=9- bz $=N;$i‘ 'y=—]\7§yi
[?] Note that the least-squares line intersects rect since it passes through the point
(2,9)-

Let

ﬁ?(@, IC) = {L(@,—l, kﬂ) . L(gjl.kﬂ) € ,Cl, L(gjl, kjl) is of the form

zcosbj + ysinbj = lg,, + k;10, where
61 is one of © values, k;; is one of K values}

and let

Bl = {L(emla kml) : L(gmla kml) € £17 3 (113,., yT‘) € rect Satisfying L(9m1) kml))

0< gml <, kn1 € R}
Figures 2 and 3 show lines from £%(0, K) for a sample data set. We shall prove that
our class £9(©, K) will contain the least-squares line as © — oo and X — oo.

For simplicity, let p = 6 + k¢ for given 8 and k.

Proposition 4.1 Let L(6m1,km1) € Bi. Let € > 0. Then 3 (6,K.) : V © >
O, and K > K., 3 L(4,k):
1 L(6,k) € £3(O,K)

2. 10 =61 |<e€/2and | pm1—pl<e/2
Proof: Let L(Om1, km1) € By and € > 0 be given. Choose ©, : 7/2"* = /0, < €¢/2.-
Similarly, choose K, : § = diag/(2" — 1) = diag/(K. — 1) < ¢/2. Then 3 L(,k) €

L3(0,Ke) : 2. is satisfied. By Note 3 above, if L(8,k) € £Y(O,, K.), then L(8,k) €
LI(O,K) VO > 0O, and V K > K. Hence 1. is satisfied. &

Proposition 4.2 For each € >0, 3 (©.,K,) : for all © > ©, and for all K > K,
given any L(0pm1,km1) € By, 3 L(6,k) :

10
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g ’ xcosB+ysin@=[_+3
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Figure 2: A data set with lines from £9(0,K), 6;; > /2

1. L(6,k) € £Y(0,K)
2. |0 —0m1|<e/2and | pm —p|<€/2

Proof: Let € > 0 be given. Choose O, : m/2% = 7/, < /2. Then for 0, ¢
{0,..., 5580 . < Ocy Vi, i=1,...,0c}, we have |0 — 6, |< /2,
| Oy = Oery 1< 7/2,..., ] Oco, — ™ [< m/2. So given any L(fm1,km) € B; we can

choose ©, so that 3 4., € {0,..., ﬁ%‘glﬂ} 2 Ot — e,y |< €/2.

For any angle 6. ¢ [—’(%,K"—EM], n=20..60,-

€

2, the corresponding p., €

[’Yenl,%nz]a ly,, < Yeny < Yen, < diag. Find
v = max {sBp {[Ven, = Yen, s n=0,...,0,—2}} (9)
11
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Figure 3: A data set with lines from £%(0,K), 6;; < 7/2

~ xcosB+ysinB=/ +9d
» » S

Choose K. : v/Ke < €/4 and K, = 2V for some y € R. Then given any L(0,,1, km1) €
B, we can choose K, so that 3 k., € {0,...,2% =1} : | e, — pm1 |< €/2.

Hence given any € > 0 and L(fn1, km1) € B; we can find ©, and K, so that
3 Lepnyy ke € LYOc, Ke) 2| 6 — 01 |< €/2 and | pry — p |< €/2.

If L(Oe,.,, ken) € LYOe, Ke), then L(b,,,, ke,,) € LYO,K) VO > O, and V K > K,
by Note 3 above. Hence 1. and 2. are satisfied.d

Let {©;, i=1,2,...} and {K;, ¢ =1,2,...} represent the possible values of © and K.
Let L(6;,,, k51) be the best line in By and let L(6};, k};) be the best line in £3(6;, K;)..
We would like 8, — 07, and k}; — k;,; (hence p}; — pf,;) as @ — co. To show this,
we need one final result.

Define C, = U2, £3(6;, K;). Note B, C ;.

Theorem 4.1 For each i =1,2,..., let L(0,,, k) € L£3(O;,K;):
Hm — 03, and kni — kiim for some Oiim, 0 < Oim < m, and Kim, 0 < kym < 00. Let
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Dy = {L(byim, kizm) : 3 a sequence {L(Onss kni)}21, L(On,, kn,) € LY(©;,K;)
such that 0., = Oyim and k,, — ki }

Then the best line in B; is the best line in D;.

PTdof.' Note that C; C D; and B; C D;. Since the minimal least squares line must
pass through (Z,7) and (Z, ) € rect, the best line in B, = the best line in D&

For the following claim, we assume the optimal line (i.e., the line which maximizes the
fitness function or, in our case, minimizes the least squares error) is unique and that
thez in D. fitness function f : [0,7] x [~M, M] is continuous where, for any line in
D;, the distance of the line from the origin is less than M.

Proposition 4.3 Let L(6},,k},;) be the best line in D, and for each 5, 1=1,2,..., let
L(6;, k},) be the best line in £(0;, K;). Then 67, — 6y and kf, — kX, as i — co.

Proof: Let L(0y,,, k7, ) be the best line in D , i.e., if L(8m1, km1) € D; and L(Om1, k1) #
L(01: ki) then f(Omi, kma) < f(Opy, ky). ‘

Let By = {(6m1,km1) : d((Om1, km1), (01, ki) < 1/;} where j; is chosen so that
if (Bilykil) € E,, and (ajl,kﬂ) € Ezc then f(9i1,ki1) > f(gjlykjl)) and _]1 — OO0 as
¢ — 00. Such sets E; exist since the optimum is unique*. :

Note that for each 4, I ¢; > 0: L(65, kpy) € L0, Ke,), |85 — 62 |< €/2,

| P — pra |< €/2, and (05,k3) € E;. The best line in £9(O,,,K.,) € E,, and the
best line in £9(0,K), VO > O, V K > K, will also be in E; (thesets E;, i =1,2,.. .,
are nested sets).

€7 77€§
as ¢ = oo. That is, if L(6*,k*) is the best line in £3(6,K), then 6* — gy, and
k* = kr, as © = oo and K — co.é

Let the best line in £L(©,,,K,,) be L(6%,k*). Note that 0:, — O,y and kY — kK,

In the above proof it was stated that the sets E;, 1 = 1,2,..., exist because the
optimum is assumed to be unique. We now prove this.

Proposition 4.4 Define E; = {(0n1, km1) : d((Om1, k1), (67,1, kr1)) < 1/j;} where j; is chosen
so that if (gil,kil) € F; and (ehl,khl) S E,LC then f(@ﬂ,kﬂ) > f(ehlakhl); and j; —

00 as 4 — 0o. Assume that f : [0, 7]x[—M, M] is continuous and has a unique maximum.
Then such sets F; exist.

Proof: We prove this by contradiction. For each 1, E; constitutes an open disk con-
taining (07,,, k7,;). From topology!” we know that if 4 is any open set containing
(67n1s k1) then F(A) C[f s ki) — €, f (01, Ky + €] for some € > 0.

So suppose not.

LI__- e ,




Then for all open sets A containing (6,1, k5,1, if (6a, k) € A then f(8,,k,) < (65, kS)
for some point (62, k) ¢ A. But f(E;) — f(6%,, k%) as i = co, where

F (01, krny) = max{f (O, kn); L(Om, km) € D1, m=1,2,...}

and (6}

* 1> Krq) is unique. Contradiction. é#

4.2.1 Remarks

1. If we choose both ©;, and K, to be large, so that | 6; — 6;_; | and | k; — k;i_y |
are both small, then the maximal line L(6}, k},) will be close to the optimal line
L (9:71,1} k:nl)

2. In developing our genetic algorithm, it seems logical to start with an initial choice
for (©;y, Kj;) and run the algorithm for a finite number of iterations, resulting in
an approximation L(©;¢, Ki?) of L(©},K}). If ©;, and/or K;, are/is small, it
is possible for L(©;, Ki?) to be close to L(©}, %) in terms of probability but

not close to L(©;, K} ) or L(6},,, k) in terms of Euclidean distance. Since it is
unknown whether given values for © and K are ’small’ or "large’; we will start by
searching, given (O, Ky), for a L(©}¢, K;#) that is close to L(©}, K},) in terms
of probability, and then choose subsequent (6;,X;) so that our approximations

L(©7%, K**) move closer to L(6},, k%) in terms of Euclidean distance.

mlsy Yml

We now would like to extend this theory to the case where the number of lines &g > 1,
ko known.

4.3 Case kg = ng, ng known, ng > 1

We consider using genetic algorithms to fit the minimum least-squares kq-piecewise
linear function to the data set (x,y) where ky = ng, ng known. The fitted values Gom
of the optimal function satisfy

. ~ _ Nj;i—1 ~ —
( ?:O]_ 271;0:1]\]:;(1_1) (yOm - ym)Z) ! = max]{(zzlzol m{_iNj(‘-_l) (y]m - ym)z) ! :

-~

yj = L(ejnoakjno)a L(ejnwkjno) € ‘C?w} (10)

where

L(ejnmkjno) o= L(Bino» kjino) |« for TNjppyy S TS INj2i-1y1 TNj) = Z(1)»

TN;ang-1y = T(N)s TNjupyy = TNy T 1fori=1,...,2(ng — 1).
Note that xn; = {Zn;,4), Ty, - - - ) TN;2g -1y depends on the function L(0jn,, kjn,)-
Our search space is
14




.

‘C?zo = {Ljno (w) : Ljno(w) € /:’nm .
Ljng is of the form zcosbj; +ysinb; = lg;, + kjid ¥V i=1,...,ng,

0 e {0, 2, 0y ke {0,1,...,2 — 1}, andé—dzag/(Qld—l)}.

We will only consider those Ljn, () € Ly, :

1. —cosb;()/ sinbju) # — cosOj(i41y/ sin b1y Vi = 1,...,m0 (no adjacent parallel
lines).

2. Let z(1),- .+, 2(j(no-1)) be the intersection points of Ljn,(x). Then TN; iy <
2(51) < LEN].(%) for i = 1, ey (no - 1)

As before, let Ljn,(2) be denoted as L(0n,, kjn,)-

The theory for the case ky = 1 can be extended to this case. Each string can be
designed to represent an ng-piecewise function L(0jn,, kjn,) € L satisfying the above
assumptions; note that each string will resemble a combination of ng strings from the
ko =1 case. For example, if ng = 3,1, = 3, and l; = 5, then a string may look like

distance 1 distance 2 distance 3

i i
001100110100010101101101

[— (— L]

angle 1 angle 2 angle 3

We then employ a similar GA optimization procedure to find the string which repre-
sents the minimal least-squares ng-piecewise function.

The optimization procedure can alternatively be viewed as a two-step process: for
each possible choice of xy;, say, X, find the optimal choice for L(Bjn,, kjn,), say,
LY (0ny, kjn,). Then, from the set of all functions {L1(8,n,, kjn,) }i>1, select the op-
timal function, say, L}(0;n,, kjn,)- If we let {xN }i>1 be the set of possible values for
xy; and let {L(Bjn,, kjno))}: denote the set of all no- piecewise functions whose pieces
intersect in such a way that x ; satisfies the above, then

f(Li(ejno’ kjno)) = m?‘X{ma'X{f(L(ejnoa kjno)); L(ejno’ kjno) € {L(Bjno’ kjno)}i}}
(11).



4.4 Further Remarks and Discussion
4.4.1 Fitness Function

In equation (10) the fitness function for our genetic algorithm was stated as

ng  Ng;—1

Q- > (om—ym))™

i=1 m=N0(;_i)

If all of the data points fall on a line (or on several linear segments), however, it is
possible for 7%, ZZ‘L}})“_I) (flom — Ym)? to equal zero. To avoid this case the above
fitness function may be modified by the addition of an arbitrary positive constant e,
yielding

ng  Npi—1

(0 > Gom—ym))+6)7"

i=1 m:NO(i—l)

4.4.2 Assumptions

In the above theory, we have assumed that the optimal number of lines is known.
However, in most cases, the optimal number of lines is unknown and must be estimated.
It may be possible to generalize the above theory to this case by utilizing a genetic
algorithm which allows for variable string lengths. Then, given a data set, the algorithm
could select the optimal number of pieces (from an initial set of possible values) as well
as the optimal piecewise function.

4.4.3 Curve Fitting

In this paper we have only considered the fitting of piecewise linear functions. It is
well known that piecewise linear functions can be used to approximate a curve to any
degree of accuracy. Hence curve fitting can be seen as a generalization of the above
problem. Suppose our interest was in fitting the optimal curve to a data set. An
approach to this problem may be to apply the above theory, given a set of points, to
find the piecewise linear function which best approximates the optimal curve. The
quality of the approximation would be influenced by the number of pieces as well as
the number of iterations.

4.4.4 More than 2 Dimensions

In two dimensions, our interest is in fitting a kq-piecewise linear function to a data set

{(z1,%1),-..,(z~,y~n)}. A similar problem exists for data in dy dimensions, dy > 2;
namely, fitting a ko-piecewise hyperplane to a data set {(x1,v1),...,(X~,yn)}, where
x; = (Ti1,- -+, Tigy) for ¢ = 1,..., N. To solve this problem using genetic algorithms,

we could consider extending the methods outlined above as follows:




Each string would represent an individual solution to the problem, i.e., a ky-piecewise
hyperplane in dy dimensions. From geometry we know that a hyperplane in R% may
" be represented as

TN cosfy_1 +yy_18infy_1 =c¢

where
e (Zi1,...,Z;iy) is a point on the hyperplane
® YN—k = Ti(N—k) COSON_(k41) + YN-(ks1)SINON_(kypy fOr k=1,... N -1
e Oy is the angle that the projection of the normal to the (X; — -+ — Xy_(z—1))

plane makes with the Xy_(x-;) axisfork=2,...,N -1

fn—1 is the angle that the projection of the normal to the hyperplane makes with
the Xy axis

6y is the angle that the projection of the normal to the X; plane makes with the
X axis (6p = 0), and

e ¢ is the perpendicular distance of the hyperplane from the origin.

To specify ¢ we use the hyper-rectangle hrect containing the points {(x1,y1), ..., ®Xn,¥~)},
just as we used the rectangle containing the points (x,y) to specify d in R?. Let 1, be
the number of bits used to specify an angle, and 14 be the number of bits used to specify

c. Let Hj; represent the ith hyperplane, or piece, of the jth k¢-piecewise hyperplane.
Then for a given set of angles ©j; = (i, ---,85in_,)s biin. € {0,..., gzl—gz?ﬁ} Vm=
0,...,do—1, welet c=lo,, +k;;0 where le,; is the minimum distance of the origin from
one of the hyperplanes passing through a vertex of hrect, diag be the maximum diago-

nal of h/l"@Ct, kji € {0, ]., vy 2ld—1}, and ¢ = diag/(2ld—1). Let Fj.,; = (")/jil, . ,’inN_l).
Then our discrete search space Hy, like £ , may be written as

ng = {ijo(xl’ e >XN) : ijo(xla s >?<N) € Hiy, Hjiko 18 of th(’j form
Zin COS Gji(N—l) + ’in(N—l) sin eji(N_.l) = l(')j,' + k‘yzé‘ V i= 1, ce ey ko,
I';; and ©j; are as specified above, 6;;, € {0,..., Ql—;,“a—lﬁ}
Vm=0,...,do— 1, k;; € {0,1,...,2% — 1}, and § = diag/(24 — 1)}

We now use GA’s to search ’H20 for the ko-piecewise hyperplane which minimizes the
least-squares distance of the points (x;,y;) from the hyperplane.




5 Implementation and Results

5.1 Caseky=1
5.1.1 Data

The data set used is from Weisberg’s text, Applied Linear Regression!®. The set
contains 17 data points that were collected in an experiment by James D. Forbes, a
Scottish physicist, designed to study the relationship between atmospheric pressure (m
Hg.) and boiling point (F°).

5.1.2 Genetic Algorithm

We used a fixed population size of M = 10 and a string length of L = 20, with 8
bits representing ¢ and 12 bits representing £; note that once l;ey, and & are known,
specifying k is equivalent to specifying d. The single-point crossover probability, p, was
fixed at 0.8. The mutation probability ¢ varied with the iteration number over a range
of [0.0015, 0.5], either increasing or decreasing depending on the value of Nit/Nmaz,

where Nzt is the current iteration number and Nmaz is the maximum number of
iterations. Nmaz was set at 1500, at which time the maximum fitness value attained
and it’s correspondmg string were reported. As stated previously, for a given string S;

and the fitted values §;; of the line it represents, the fitness value is given as

N
FO) = Q@i —w)h) ™ (12)
i=1
The results of the GA were compared to the results of a simple linear regression program
designed to fit the least squares line to the data.

5.1.3 Experimental Results

The proposed algorithm was tested on the data described in Section 5.1.1. The results
are shown in Table 1 and Figure 4. The results of the GA are comparable to the results
of the least-squares regression program. The disparity between the results of the two
methods may be the result of, for example, the algorithm failing to converge (due to
an insufficient value for Nmaz) or lack of precision in the results of the GA (due to
insufficient string length).

| | Nit | function | max; f(¥;) ]
Approx | 1500 | f(z) = 0.882z — 39.32 0.450
Actual f(z) = 0.895z — 42.14 0.464

Table 1: Results of Experiment 1
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Figure 4: Results of Experiment 1

5.2 Case kg = ng, ng known, ng > 1

We will demonstrate this case when kg = 3.

5.2.1 Data

An artificial data set was created by first selecting a 3-piecewise linear generating
function g(z) whose value is given by

24z —-1<z<0
g(z)=<¢ 2—-z 0<z<1 (13)
T 1<z<L2

where x = (—1,-0.96,-0.92,...,1.96,2). For each value z; € x, the corresponding
vector y; = (Yi1,...,¥is) consists of 5 values randomly generated from a Normal (g(z;),0.1)
distribution.




5.2.2 Genetic Algorithm

Each string or chromosome represents a 3-piecewise linear function
L(053,kj3) = (L(6):3, kju3), L(053, Kj3), L{Bja3, Kja3))

over the range of x. Let z(;;) be the intersection point of Lj 3 and Lj,3 and let z)
be the intersection point of Lj,3 and Lj,3. We chose to consider only those piecewise
functions L3 for which

o z(;1) and z(jg) exist (no adjacent parallel pieces)

® 7(1) < Z(51) < Z(52) < T(w)

The fitness value for a given string is then

Nj(2i-1)

(Z Z (gjm - ym)2)_1 (14)

=1 m=Nj(a(i-1))

where (NjO’ ceey Nj5) :

® TNjo = T(1)» TNjs = Z(N)

L4 xle S z(]l) S .'L‘Nj1+]_ = mN’jg; .'Est S Z(J?) S xNjg,-}—l - .'EN].4

and
L(9j13)kj13)|$ TN;o <z< TN
Jim = L(0i3 kjpa)le Tny, < < Ty (15)
33 Kja3)e Tng < T < T

5.2.3 Design Modifications

With ny = 3, it became evident that if we set 1, = 8 and 14 = 12 as above, so that each
string had length L = 60, the size of the population matrix and the number of iterations
required for convergence would make our approach computationally expensive. To
avoid this problem, the genetic algorithm was divided into hierarchical loops. The
modified algorithm can be described as follows:

e Set the global parameters M = 40, p = 0.8, and Nit = number of iterations per
loop = 3000.
e Loopl

1. Choose 1, =2 and 13 = 5 (L = 21) so that the 4 angles a;,...,a4 and 10 &k
values k1, ..., kyp that can be represented are evenly spaced over the ranges
[r/4,7] and [0,2° — 1], respectively.
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2. Generate the initial population @ so that all strings represent functions
which meet the above specifications for z;;) and z(j).

3. Execute a genetic algorithm beginning with Q to find the optimal string

Sl = (31a17 S1dyy - - -y Slass sldg)'
4. Create matrices Sop4 and S,pp with three rows, where row 7 represents
the optimal angle or optimal distance of piece i, ¢« = 1,...,3. Place the

appropriate sections of S; into Sops and Sppp.
e Loop 2

5. Generate a new matrix Q*, also with 1, =2 and 13 = 5, so given that a;
and k; are the optimal angle and distance most recently selected for piece 7,
the 4 possible angles and 10 possible k values for piece ¢ represented in Q*
are evenly spaced over the ranges [a; — 7/(4?), a; + 27 /(4?)] and [(2(k;) —
1)/2,k; + 1).

6. Repeat step 3 to find Sy = (S24;, 24y, « - - 243 S1d3)-

7. Place the appropriate sections of S; into Sppa and S,p (NOW Sppa;, =
(Sla” 820,,') and SopDi = (Sldi) S?d,‘))°

e For loop j, j > 3 repeat steps 5-7 where angle and distance values are now evenly
spaced over [a; — 7/(47),a; + 2 /(47)] and [(2(k;) — 1)/2, k; + 1].

e When the desired degree of precision has been reached, the algorithm is stopped
and the matrices Sy,4 and S,pp contain the optimal piecewise function.

Note that the size of the population matrix remains constant regardless of the number
of loops being performed. Hence the use of this modified version of a GA avoids the
manipulation of large matrices, reducing the required computational resources, without
adversely affecting the precision of the resulting solution.

5.2.4 Experimental Results

Table 2 shows the performance of the proposed GA based algorithm on the artificial
data described in Section 5.2.1. The fitness value for the generating lines is stated for
purpose of comparison. '

| | Nloops | function | max; f(¥;) |
- 211996 -1<z<0
Approx 2 f(z) = { 1991 -z 0<z<1 0.266836
z—0.019 1<z<2
z+2 —-1<z<0
Generator g(z) = { 2—z 0<z<1 0.2633
T 1<z<2

Table 2: Results of Experiment 2
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After 2 loops and only 6000 iterations, the GA converged to a 3-piecewise function
with a greater fitness value than the original generating lines.

normy
1.6 1.8 2.0
!

1.4

1.2

1.0

ese ——— generating lines o .
------------- GAlines c e

0.8

T ] [ T I
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

normx

Figure 5: Results of Experiment 2

6 Conclusions and Future Research

We have conducted 2 experiments employing GA’s for the fitting of piecewise linear
functions to datasets in R?. Our results demonstrate that GA’s can yield near optimal
results at limited computational expense.

These encouraging results have suggested several directions for future research. Our,
experiments involve cases where the number of lines is known. We would like to
design an algorithm which determines the optimal number of lines as well as their
placement. Many interesting problems involve data sets of more than 2 dimensions;
hence we would like to explore the use of GA’s for fitting hyperplanes and other
multidimensional surfaces. The comparison of a multivariate GA for surface fitting
with existing methods, such as MARS(?%2!) and projection pursuit regression(?>23) is
certainly worth investigating.
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